메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2002년 춘계학술대회논문집
발행연도
2002.6
수록면
325 - 330 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Today many companies offer millions of products to customers. They are faced with a problem to choose particular products. In response to this problem a new marketing strategy, recommendation has emerged.
Among recommendation technologies collaborative filtering is most preferred. But the performance degrades with the number of customers and products. Namely, collaborative filtering has two major limitations, sparsity and scalability. To overcome these problems we introduced a new recommendation methodology using adjusted product hierarchy, grain.
This methodology focuses on dimensionality reduction to improve recommendation quality and uses a marketer's specific knowledge or experience. In addition, it uses a new measure in the neighborhood formation step which is the most important one in recommendation process.

목차

Abstract

1. Introduction

2. Backgrounds

3. Research Methodology

4. Performance Evaluation

5. Conclusions

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013774739