메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
웹 문서들은 빠른 생성과 소멸의 특징 때문에, 사용자는 찾고자하는 웹 문서를 신속하고 정확하게 추천해 줄 시스템을 요구하고 있다. 정제되지 않은 웹 데이타에는 사용자들의 축적된 경험들을 포함하는 유용한 정보들을 포함하고 있다. 현재, 이러한 유용한 정보를 마이닝 기법이나 통계학적 측정 방법 등을 가지고 정제하여 추천 시스템을 통해 사용자에게 제공하려는 노력이 시도되고 있다. 기존의 정보 필터링 방식은 사용자들의 프로파일을 반드시 이용해야 하는 문제점을 갖고 있으며, 협력적 필터링 방식은 First Rater 문제와 Sparsity 문제가 있다. 또한 사용자 브라우징 패턴을 이용하는 동적 추천 시스템은 연관성이 없는 웹 문서들을 결과로서 제공한다는 문제점이 있다.
본 논문에서는 웹 문서 형식에 따라 웹 문서 사이의 유사도를 이용하여 웹 문서를 분류하고, 웹 서버에 기록된 로그 파일을 이용하여 사용자 브라우징 순차 패턴 DB를 생성한다. 이렇게 생성된 정보들과 사용자들의 세션 정보를 이용하여, 사용자가 웹 문서에 접근했을 때 현재 웹 문서와 유사도가 높은 상위 N개의 연관 웹 문서 집합을 제공하고, 순차적인 특성을 갖는 웹 문서를 추천 문서로 제공하는 시스템을 제안한다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 웹 로그분석과 문서 유사도를 이용한 동적 추천 시스템

4. 실험 및 결과

5. 결론

참고문헌

저자소개

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890381