메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시멘틱 웹(semantic web)과 함께 등장한 RDF는 웹 상의 메타데이타 및 데이타를 나타내는 표준으로 자리매김 하고 있다. 이에 따라 RDF에 대한 저장 및 질의 처리에 대한 연구가 많이 이루어졌으며, 대표적인 시스템으로 Sesame, Jena 등이 있다. 그러나 아직 갱신 방법에 대한 연구는 부족하다. RDF 데이타가 지속적으로 갱신이 이루어지는 경우에는 저장된 RDF를 갱신해야 하는 상황이 발생한다. 현존하는 RDF 저장소에서 데이타를 갱신하기 위해서는 기존의 데이타를 모두 삭제한 후 새로운 데이타를 처음부터 다시 저장해야 하는데, 이러한 상황에서는 매우 비효율적이다. 또한 한 RDF 저장소에 여러 RDF가 저장되어 있는 경우에는 갱신 문제가 더욱 복잡해진다. 이에 본 논문에서는 RDF 데이타를 점진적으로 갱신하는 기법을 제안하고자 한다. 제안한 기법은 텍스트 비교 알고리즘을 통해 얻은 결과를 보완하여 기존 RDF 데이타에서 변화된 트리플 문장만을 추출하여 갱신한다. 실제 RDF 데이타를 이용한 실험을 통해 제안한 방법을 사용하여 갱신을 효율적으로 할 수 있음을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 문제 설명
4. TripleDiff: RDF 문서의 점진적 갱신 알고리즘
5. 성능 평가
6. 결론 및 향후 연구과제
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017415977