메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 한국어정보처리 과정에서 구문 관계를 의미 관계로 사상하는 의미역 결정 문제에 대해 다루고 있다. 한국어의 경우 대량의 학습 말뭉치를 구하기 힘들며, 이를 구축하기 위해서는 많은 시간과 노력이 필요한 문제점이 있다. 따라서 본 논문에서는 학습 말뭉치를 직접 태강하지 않고 격틀사전을 이용하여 자동으로 학습 말뭉치를 구축하고 간단한 확률모델을 적용하여 정신적으로 모델을 학습하는 수정된 self-training 알고리즘을 사용하였다. 실험 결과, 4개의 부사격 조사에 대해 평균적으로 81.8%의 정확률을 보였으며, 수정된 self-training 방법은 기존의 방법에 비해 성능 및 실행시간에서 개선된 결과를 보였다.

목차

요약
1. 서론
2. 기존 연구
3. 의미역 결정 시스템의 구조
4. 서술어-논항 관계 추출기
5. 격틀사전을 이용한 의미역 결정
6. 확률모델을 이용한 의미역 결정
7. 비지도 학습을 기반으로 한 의미역 결정
8. 실험 및 평가
9. 결론 및 향후 연구
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0