메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Niwat Thepvilojanapong (Tokyo Denki University) Yasunori Yakiyama (Tokyo Denki University) Oru Mihirogi (Tokyo Denki University) Masayuki Iwai (University of Tokyo) Kazunori Umeda (Chuo University) Yoshit Tobe (Tokyo Denki University) Ryosuke Shibasaki (University of Tokyo)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
3,702 - 3,709 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Although human activities in the World Wide Web are rapidly increasing due to the advent of many online services and applications, we still need to appraise how things such as a merchandise in a store or pictures in a museum receive attention in the real world. To measure people’s attention in the physical world, we propose a Sensor of Physical-world Attention using Lasers canning(SPAL). It is challenging to use alaser scanner because it provides only front-side circumference of any detected objects in a measurement area. Unlike cameras, a laser scanner poses no privacy problem because it does not recognize and record an in dividual. SPAL includes many important factors when calculating people’s attention, i.e., lingering time, direction of people, distance between people and a target object. To obtain such information for calculation, we develop three processing modules to extract information from raw data measured by a lasers canner. We define two attention metrics and two measurement models to compute people’s attention. To validate the proposed system, we implemented aprototype of SPAL and conducted experiments in the real-world environment. The results show that the proposed system is a good candidate for determining people’s attention.

목차

Abstract
1.INTRODUCTION
2.RELATED WORK
3.ATTENTION DETECTION SYSTEM
4.MEASUREMENT MODELS AND METRICS
5.SYSTEM IMPLEMENTATION AND EXPERIMENTS
6.CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000759176