메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현주 (세종대학교) 신동일 (세종대학교) 신동규 (세종대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제39권 제2호(융합기술)
발행연도
2014.2
수록면
122 - 129 (8page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 사용자에게서 취득한 뇌파의 감정분류를 시행하였고, SVM(Support Vector Machine)과 K-means 알고리즘으로 분류실험을 하였다. 뇌파 신호는 측정 한 32개의 채널 중에서, 이전 연구에서 감정분류가 뚜렷하게 나타났던 CP6, Cz, FC2, T7, PO4, AF3, CP1, CP2, C3, F3, FC6, C4, Oz, T8, F8의 총 15개의 채널을 사용하였다. 감정유도는 DVD 시청과 IAPS(International Affective Picture System)라는 사진 자극 방법을 사용하였고, 감정분류는 SAM(Self-Assessment Manikin) 방법을 사용하여 사용자의 감정상태를 파악하였다. 취득된 사용자의 뇌파신호는 FIR filter를 사용하여 전처리를 하였고, ICA(Independence Component Analysis)를 사용하여 인공산물 (eye-blink)을 제거하였다. 전처리된 데이터를 FFT를 통하여 주파수 분석을 하여 특징추출(feature extraction) 하였다. 마지막으로 분류알고리즘을 사용하여 실험을 하였는데, K-means는 70%의 결과를 도출하였고, SVM은 71.85%의 결과를 도출하여 정확도가 더 우수하였으며, 이전의 SVM을 사용했던 연구결과와 비교분석하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 뇌파의 분류
Ⅲ. 실험방법
Ⅳ. 결론 및 토의
References

참고문헌 (22)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001281523