메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안현민 (Korea University) 이수강 (Korea University) 심규석 (Korea University) 김익한 (Korea University) 진서훈 (Korea University) 김명섭 (Korea University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제40권 제3호
발행연도
2015.3
수록면
541 - 550 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
급하게 일어나는 인터넷의 활성화는 그 어느 때보다 효율적인 엔터프라이즈 망 운영 방안을 필요로 하고 있다. 효율적인 망 운영을 위해서는 장기간의 트래픽 분석을 통해 망의 특성을 정확히 반영한 운영 정책 적용이 필요하다. 하지만 기존에는 급격하게 증가하는 장기간 트래픽 데이터의 처리가 불가능했고, 다양한 분석 결과를 낼 수 없는 단기간 분석만 이루어졌다. 최근 빅 데이터 분석 플랫폼과 도구의 개발로 인해 장기간 트래픽 분석이 가능하게 되었고, 이를 이용해 망의 특성을 정확히 반영할 수 있는 장기간 트래픽 분석을 통한 엔터프라이즈 망 자원효율화 방안이 요구되고 있다. 본 논문에서는 엔터프라이즈 망에서 발생한 장기간의 트래픽을 수집하고 저장 및 관리하는 방안에 대해 제안한다. 또한 분류기준을 정의하였으며, 수집된 빅 데이터 트래픽을 각 분류 기준으로 분류한 뒤 다각적인 통계 분석을 통해 망 자원을 효율화 하는 방안을 제안한다. 제안하는 방법을 학내 망에 적용하여 실험하였으며, 통계 분석 결과 시간과 공간, 그리고 사용목적에 따라 Quality of Service(QoS)정책을 달리 적용해야 함을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 빅 데이터 트래픽의 수집 및 기초 데이터 생성
Ⅳ. 데이터 저장·관리 및 분석
Ⅴ. 통계 기반 빅 데이터 트래픽 분석
Ⅵ. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-567-001370231