메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤상웅 (서울대학교) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제21권 제4호
발행연도
2015.4
수록면
338 - 342 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
시계열 데이터를 다룰 수 있는 기계학습모델인 회귀 신경망은 되먹임 연결을 허용하기 때문에 앞먹임 신경망에 비해 훨씬 다양한 구조를 가질 수 있다. 본 연구에서는 은닉 뉴런 간의 네트워크 구조에 초점을 맞추어 그것이 회귀 신경망의 정보처리 능력에 미치는 영향을 탐구하고자 한다. 이를 위해 회귀신경망 모델 중 하나인 Echo State Network을 기준으로 하여, 여러 가지 잘 알려진 네트워크 모델에 따라 은닉 뉴런 간 연결을 구성하고 각각의 경우에 시계열 학습 능력과 동역학을 분석하였다. 그 결과, 은닉뉴런의 네트워크 구조에 따라 모델의 성능이 큰 폭으로 변하는 것이 관찰되었으며, 그러한 현상은 신경망 동역학이 가지는 임계도(criticality)의 변화와 잘 일치했다. 본 연구의 결과는 기존 회귀 신경망 연구에서 주된 관심사였던 신경망 연결 가중치뿐만 아니라 신경망의 연결 구조가 모델의 성능에 중요한 영향을 미친다는 사실을 보여주며, 성능 향상을 위한 중요한 단서가 될 수 있다.

목차

요약
Abstract
1. 서론
2. 연구 방법
3. 은닉 뉴런 연결구조에 따른 시계열 학습 능력
4. 은닉 뉴런 연결구조에 따른 동역학 특성
5. 선호적 연결 네트워크에 대한 고찰
6. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0