메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이연란 (숭실대학교)
저널정보
한국만화애니메이션학회 만화애니메이션 연구 만화애니메이션연구 통권 제39호, 2015년
발행연도
2015.6
수록면
393 - 412 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사람의 이미지를 보고 느끼는 감성인식은 환경, 개인적 성향에 따라 다양하게 변화한다. 그리하여 이미지 감성인식을 숫자로 제어하려는 감성컴퓨터 연구에 집중되고 있다. 그렇지만 기존의 감성컴퓨팅 모형은 숫자화된 객관적이고, 명확한 측정이 미흡한 상황이다. 따라서 이미지 감성인식을 감성컴퓨팅을 통해 정량화하고, 객관적인 평가 방식의 연구가 필요한 상황이다. 이에 본 논문은 이미지 감성인식을 계산 방식에 따라 숫자화한 정량화로 감성크기를 표현했다. 그리하여 이미지 감성 인식의 주요한 속성인 색채를 구성인자로 적용한다. 또한 디지털 색채 감성컴퓨팅을 적용하여 계산하는데 연구의 중점을 두었다. 이미지 색채 감성컴퓨팅 연구방식은 감성속성인 색상, 명도, 채도에 중요도에 따른 가중치를 감성점수에 반영한다. 그리고 감성점수를 이미지 감성계산식에 적용하여 쾌정도(X축), 긴장도(Y축)를 숫자 방식으로 계산한다. 거기에 쾌정도(X축), 긴장도(Y축)의 교차하는 위치점을 이미지 감성좌표의 감성점으로 위치한다. 이미지 색채 감성좌표는 러셀의 핵심 효과(Core Affect)를 적용하여 16가지 주요대표감성을 기반으로 한다. 이미지 감성점은 기준의 위치에서 대표감성크기와 감성상관관계를 숫자화하고, 이미지 감성을 정량화한다. 그리하여 이미지 감성인식은 숫자 크기로 비교한다. 감성점수의 대소에 따라 감성이 변화함을 증명한다. 비교 방식은 이미지 감성인식을 16개 대표감성과 연관된 감성의 상위 5위로 구분하고, 집중된 대표감성크기를 비교 분석한다. 향후 감성컴퓨팅 방식이 사람의 감성인식과 더 유사할 수 있도록 감성계산식의 연구가 필요하다.

목차

초록
Ⅰ. 서론
Ⅱ. 감성컴퓨팅 연구배경
Ⅲ. 이미지 색상 감성컴퓨팅 알고리즘
Ⅳ. 결론
참고문헌
ABSTRACT

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-688-001773178