메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전명중 (숭실대학교) 홍진영 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.4
발행연도
2016.4
수록면
450 - 459 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
매년 RDFS 데이터는 대용량화 되어 가며, 빠른 질의를 위한 SPARQL 처리방식에 대한 변화가 필요하게 되었다. 이를 위해 대용량 분산 처리 프레임워크를 활용한 SPARQL의 질의 처리방식이 많이 연구되고 있다. 기존의 연구 중 대용량 분산 처리 프레임워크인 Hadoop(MapReduce) 기반 질의 엔진은 반복적인 작업으로 인한 잦은 I/O 발생으로 실시간 질의 처리가 불가능하며, 인메모리 기반 분산 질의 엔진 역시 낮은 단계의 언어 수준에서 분산 구조를 고려한 구현이 필요하기 때문에 질의 엔진 구축이 어렵다. 본 논문에서는 인메모리 기반 분산 질의 처리 프레임워크인 SparkSQL을 활용하여 대용량 트리플 데이터에 대한 SPARQL 질의문 처리 속도를 향상시킬 수 있는 질의 처리 엔진 구축 방법을 제안한다. SparkSQL 은 Spark 기반의 고수준 분산 질의 엔진으로서 기존의 SQL문을 활용한 질의가 가능하다. 따라서 SPARQL 질의문을 처리하기 위해서는 Jena를 이용하여 Algebra Tree를 생성한 후 이를 Spark 시스템에 적용하기 위한 Spark Algebra Tree로 변환해야 한다. 그리고 이를 이용하여 SparkSQL 질의문을 생성하는 시스템을 구축하였다. 또한 Spark 인메모리 시스템에서 보다 효율적인 질의 처리를 위한 DataFrame기반의 트리플 Property 테이블 설계를 제안하고 SparkSQL 프레임워크에 활용하였다. 마지막으로 기존의 분산처리 프레임워크를 사용한 질의 엔진과 비교 평가를 통하여 연구의 타당성을 검증한다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. SparQLing
4. 실험 및 결과
5. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0