메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
곽창욱 (경북대학교) 김선중 (한국전자통신연구원) 박성배 (경북대학교) 김권양 (경일대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제9호
발행연도
2016.9
수록면
461 - 466 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
토픽 확장은 학습된 토픽의 질을 향상시키기 위해 추가적인 외부 데이터를 반영하여 점진적으로 토픽을 확장하는 방법이다. 기존의 온라인 학습 토픽 모델에서는 외부 데이터를 확장에 사용될 경우, 새로운 단어가 기존의 학습된 모델에 반영되지 않는다는 문제가 있었다. 본 논문에서는 무한 사전 온라인 LDA 토픽 모델을 이용하여 외부 데이터를 반영한 토픽 모델 확장 방법을 연구하였다. 토픽 확장 학습에서는 기존에 형성된 토픽과 추가된 외부 데이터의 단어와 유사도를 반영하여 토픽을 확장한다. 실험에서는 기존의 토픽 확장 모델들과 비교하였다. 비교 결과, 제안한 방법에서 외부 연관 문서 단어를 토픽 모델에 반영하기 때문에 대본 토픽이 다루지 못한 정보들을 토픽에 포함할 수 있었다. 또한, 일관성 평가에서도 비교 모델보다 뛰어난 성능을 나타냈다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 무한 사전 온라인 LDA 토픽 모델에서 의미적 유사도를 반영한 토픽 확장
4. 실험 결과
5. 결론 및 향후 연구
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0