메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김인겸 (국립기상과학원) 김혜민 (국립기상과학원) 임병환 (국립기상과학원) 이기광 (단국대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제16권 제10호
발행연도
2016.10
수록면
393 - 402 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기상청에서 현재 시행되고 있는 만족도 설문조사의 한계를 보완하기 위해 SNS를 통한 감성분석이 활용될 수 있다. 감성분석은 2011∼2014년 동안 ‘기상청’을 언급한 트위터를 수집하여 나이브 베이즈 방법으로 긍정, 부정, 중립 감성을 분류하였다. 기본적인 나이브 베이즈 방법에 긍정, 부정, 중립의 각 감성에서만 출현한 형태소들로 추가사전을 만들어 감성분석의 정확도를 향상시키는 방법을 제안하였다. 분석결과 기본적인 나이브 베이즈 방법으로 감성을 분류할 경우 약 75%의 정확도로 학습데이터를 재현한데 반해 추가 사전을 적용할 경우 약 97%의 정확성을 보였다. 추가사전을 활용하여 검증자료의 감성을 분류한 결과 약 75%의 분류 정확도를 보였다. 낮은 분류 정확도는 향후 기상 관련의 다양한 키워드를 포함시켜 학습데이터 양을 늘려 감성사전의 질을 높임과 동시에 상시적인 사전의 업데이트를 통해 개선될 수 있을 것이다. 한편, 개별 어휘의 사전적 의미에 기반한 감성분석과 달리 문장의 의미에 기반하여 감성을 분류할 경우 부정적 감성 비율의 증가와 만족도 변화 추이를 설명할 수 있을 것으로 보여 향후 설문조사를 보완할 수 있는 좋은 수단으로 SNS를 통한 감성분석이 활용될 수 있을 것으로 사료된다.

목차

요약
Abstract
I. 서론
II. 선행연구
III. 연구자료
IV. 감성분석
V. 결과 및 고찰
VI. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-310-001303080