메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이건일 (포항공과대학교) 이의현 (포항공과대학교) 이종혁 (포항공과대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.1
발행연도
2017.1
수록면
57 - 62 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 전통적인 한국어 형태소 분석 및 품사 태깅 방법론은 먼저 형태소 후보들을 생성한 뒤 수많은 조합에서 최적의 확률을 가지는 품사 태깅 결과를 구하는 두 단계를 거치며 추가적으로 형태소의 접속 사전, 기분석 사전 및 원형복원 사전 등을 필요로 한다. 본 연구는 기존의 두 단계 방법론에서 벗어나 심층학습 모델의 일종인 sequence-to-sequence 모델을 이용하여 한국어 형태소 분석 및 품사 태깅을 추가 언어자원에 의존하지 않는 end-to-end 방식으로 접근하였다. 또한 형태소 분석 및 품사 태깅 과정은 어순변화가 일어나지 않는 특수한 시퀀스 변환과정이라는 점을 반영하여 음성인식분야에서 주로 사용되는 합성곱 자질을 이용하였다. 세종말뭉치에 대한 실험결과 합성곱 자질을 사용하지 않을 경우 97.15%의 형태소 단위 f1-score, 95.33%의 어절단위 정확도, 60.62%의 문장단위 정확도를 보여주었고, 합성곱 자질을 사용할 경우 96.91%의 형태소 단위 f1-score, 95.40%의 어절단위 정확도, 60.62%의 문장단위 정확도를 보여주었다.

목차

요약
Abstract
1. 서론
2. Sequence-to-sequence 모델을 이용한 한국어 형태소 분석 및 품사 태깅
3. 실험결과 및 분석
4. 결론 및 향후연구
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0