메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제11권 제12호
발행연도
2010.12
수록면
5,089 - 5,096 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
문서 범주화는 정보검색 시스템의 중요한 기능중의 하나로 문서들을 어떤 기준에 의해 그룹화를 하는 것을 말한다. 범주화의 일반적인 방법은 대상 문서에서 중요한 단어들을 추출하고 가중치를 부여한 후에 분류 알고리즘에 따라 문서를 분류한다. 따라서 성능과 정확성은 분류 알고리즘에 의해 결정됨으로 알고리즘의 효율성이 중요하다. 본 논문에서는 단어 가중치 계산 방법을 개선하여 문서분류 성능을 향상시키는 것을 소개하였다. Okapi BM25 단어 가 중치법은 일반적인 정보검색분야에서 사용되어 검색 결과에 좋은 결과를 보여주고 있다. 이를 적용하여 문서 범주화 에서도 좋은 성능을 보이는지를 실험하였다. 비교한 단어 가중치법에는 가장 일반적인 TF-IDF법와 문서분류에 최적 화된 가중치법 TF-ICF법, 그리고 문서요약에서 많이 사용되는 TF-ISF법을 이용하여 4가지 가중치법에 따라 결과를 측정하였다. 실험에 사용한 문서로는 Reuter-21578 문서를 사용하였으며 분류기 알고리즘으로는 Support Vector Machine(SVM)와 K-Nearest Neighbor(KNN)알고리즘을 사용하여 실험하였다. 사용된 가중치법 중 Okapi BM25 법이 가장 좋은 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001143487