메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제16권 제1호
발행연도
2015.1
수록면
507 - 515 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 초음파영상에서 컴퓨터보조진단으로 유방질환의 병변인식률을 알아보고자 6가지 질감특성분석 파라미터 (평균밝기, 대조도, 평탄도, 왜곡도, 균일도, 엔트로피) 알고리즘을 제안하였다. 2013년 8월에서 2014년 1월까지 부산소재 대학 병원을 내원한 환자 중 영상의학과 전문의의 판독과 세포병리학 진단 결과를 토대로 한 90증례의 유방 초음파영상을 대상으로 하였다. 연구방법은 유방 초음파영상에서 관심영역을 50x50 픽셀 크기로 설정하였으며, 획득된 실험영상(정상, 양성, 악성)에 히스토그램 평활화의 전처리 과정 후 MATLAB을 이용한 질감특성분석 알고리즘의 결과값을 산출하였다. 그 결과 제안된 질감특성분석 파라미터 중 평균밝기, 왜곡도, 균일도, 엔트로피의 정상과 악성의 병변인식률은 100%로 높게 나타났으며. 정상과 양성의 병변인식률은 약 83∼96%를 나타내었다. 이러한 결과는 유방질환에서 감별진단의 전처리 단계로 자동진단의 가능성을 나타내며, 향후 제안된 알고리즘의 추가적인 연구와 다양한 임상증례에 대한 신뢰성과 재현성이 제공된다면 컴퓨터보조진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파 영상에 대한 적용이 가능할 것으로 사료된다.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001095093