메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제21권 제6호
발행연도
2010.12
수록면
1,061 - 1,069 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터마이닝 분야에서 연관성분석은 가장 많이 사용되고 있는 기법으로 데이터 내에 포함되어 있는 특정 항목들의 연관성을 수치화시켜 나타내는 방법이다. 기본적으로 연관성규칙은 지지도, 신뢰도, 향상도를 계산하여 연관성의 유무를 판단한다. 기존에 제시된 관련 논문에서는 관심변수의 발생 유무만을 바탕으로 연관성규칙을 이용하였고, 빈번하지 않은 데이터에 대한 문제점과 순위결정함수를 통한 해결방안을 제시하였다. 하지만 실제 데이터에서는 발생이 빈번하지 않은 데이터 뿐 아니라, 발생이 많이 일어나는 데이터도 존재한다. 따라서 발생빈도를 고려한 연관성규칙이 필요하다고 생각한다. 본 논문에서는 각 케이스 내의 발생빈도를 고려한 새로운 연관성 측정 도구를 제시하였다. 또한 실제 예제를 통하여 기존의 연관성규칙과 새로운 연관성규칙의 결과를 비교해 보았다. 그 결과, 새로 제시한 연관성규칙이 기존의 연관성규칙보다 더 세밀하게 구분하는 것을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001380109