메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sowmya Kasturi (University of Ulsan) Kang-Hyun Jo (University of Ulsan)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
1,346 - 1,349 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The number of elderly people living alone has been considerably increased over the past few years. Hence the research regarding Ambient Assisted Living (AAL) systems has been given significant importance to improve the quality of life for them. Falls have become one of the major health concern among elders. Many fall detection and classifications methods are being developed to provide a reliable solution. The proposed system presents a vision based human fall classification method to discriminate falls from non-fall events. The depth images from a ceiling mounted Kinect camera are considered in the proposed system to preserve privacy, reduce the influence of occlusion and complex cluttered background. Human silhouettes are obtained after background subtraction and shape based features are extracted. A binary Support Vector Machine(SVM) classifier fed with these features is used to classify the fall events from non-fall events. The proposed method was tested on a publicly available dataset and classifies falls from other actions with an accuracy of 93.04%.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORKS
3. PROPOSED METHOD
4. EXPERIMENTS
5. RESULTS
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001427870