메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이동현 (서울대학교) 이호성 (서울대학교) 이규중 (선문대학교) 이혁재 (서울대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제11호
발행연도
2017.11
수록면
1,750 - 1,758 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In super-resolution, various methods with Convolutional Neural Network(CNN) have recently been proposed. CNN based methods provide much higher image quality than conventional methods. Especially, VDSR outperforms other CNN based methods in terms of image quality. However, it requires a high computational complexity which prevents real-time processing. In this paper, the method to apply a deconvolution layer to VDSR is proposed to reduce computational complexity. Compared to original VDSR, the proposed method achieves the 4.46 times speed-up and its degradation in image quality is less than –0.1 dB which is negligible.

목차

ABSTRACT
1. 서론
2. 컨볼루션 뉴럴 네트워크 기반 super resolution 관련 연구
3. 제안한 컨볼루션 뉴럴 네트워크 기반 super resolution 방법
4. 실험 결과 및 고찰
5. 결론
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001555081