메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노석범 (Joongbu University) 이동윤 (Joongbu University)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제10권 제6호
발행연도
2017.12
수록면
594 - 600 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (18)

초록· 키워드

오류제보하기
본 논문에서는 매우 높은 차원을 가진 데이터에서 의미 있는 특징 벡터 추출하여 입력 공간의 차원을 줄이기 위하여 주성분 분석법을 사용하였다. 주성분 분석법을 이용하여 축소된 차원을 가진 입력 데이터를 이용하여 회귀 다항식의 입력벡터로 사용하는 모델과 패턴 분류기의 설계 방법을 제안하였다. 제안된 모델 및 패턴 분류기는 매우 단순한 구조를 가진 회귀다항식을 기반으로 설계하여 모델 및 패턴 분류기의 과적합 문제를 해결 하고자 하였다. 제안된 설계방법을 적용하여 설계된 모델과 패턴 분류기의 성능을 비교 및 평가하기 위하여, 다양한 기계 학습 데이터 집합을 사용하였다.

목차

요약
Abstract
1. 서론
2. 본론
3. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001658247