메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
남광민 (Kwangwoon University) 정용진 (Kwangwoon University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제21권 제4호
발행연도
2017.12
수록면
388 - 396 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
얼굴 검출에는 다양한 포즈, 빛의 세기, 얼굴이 가려지는 현상 등의 많은 변수가 존재하므로, 높은 성능의 검출 시스템이 요구된다. 이에 영상 분류에 뛰어난 Convolutional Neural Network (CNN)이 적절하나, CNN의 많은 연산은 고성능 하드웨어 자원을 필요로한다. 그러나 얼굴 검출을 위한 소형, 모바일 시스템의 개발에는 저가의 저전력 환경이 필수적이고, 이를 위해 본 논문에서는 소형의 FPGA를 타겟으로, 얼굴 검출에 적절한 3-Stage Cascade CNN 구조를 기반으로하는 CPU-FPGA 통합 시스템을 설계 구현한다. 가속을 위해 알고리즘 단계에서 Adaptive Region of Interest (ROI)를 적용했으며, Adaptive ROI는 이전 프레임에 검출된 얼굴 영역 정보를 활용하여 CNN이 동작해야 할 횟수를 줄인다. CNN 연산 자체를 가속하기 위해서는 FPGA Accelerator를 이용한다. 가속기는 Bottleneck에 해당하는 Convolution 연산의 가속을 위해 FPGA 상에 다수의 FeatureMap을 한번에 읽어오고, Multiply-Accumulate (MAC) 연산을 병렬로 수행한다. 본 시스템은 Terasic사의 DE1-SoC 보드에서 ARM Cortex A-9와 Cyclone VFPGA를 이용하여 구현되었으며, HD (1280x720)급 입력영상에 대해 30FPS로 실시간 동작하였다. CPU-FPGA 통합시스템은 CPU만을 이용한 시스템 대비 8.5배의 전력 효율성을 보였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-056-001650989