메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jonghoe Kim (Korea Institute for Defense Analyses) Woo-sung Kim (Handong Global University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.2
발행연도
2018.6
수록면
281 - 293 (13page)
DOI
10.7232/iems.2018.17.2.281

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As seaborne trade has increased, so has worldwide maritime container transport. Container transportation market demand is predicted to exceed existing port capacity. To resolve this capacity problem, a new port concept based on offshore unloading operations has recently been proposed as an alternative. In this new port concept, an arriving containership receives unloading service in the open sea from transportation units with a finite capacity. The transportation units travel between the containership in the sea, transferring containers from the ship to the land berth. While designing an efficient port system requires evaluating performance measures for the concept, traditional analytic solutions, such as queueing formulae, do not fit the system well because of the behavior of transportation units. Motivated by this absence of results, we study a design problem for the port system based on queueing evaluation techniques. We derive the exact solution for the mean service time of a ship in the system with offshore operation, and incorporate this service time with existing queueing models to derive performance measures. M/G/m and M/G/m/m queueing models will be modified. The solution can be used to address unloading resource optimization problems in port design. To use this concept to design an efficient harbor system, we apply our results to the port of Surabaya in Indonesia.

목차

ABSTRACT
1. INTRODUCTION
2. PRELIMINARIES
3. QUEUEING ANALYSIS
4. APPLICATION TO SURABAYA PORT
5. CONCLUDING REMARKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-003116669