메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현종 (케이사인) 어성율 (단국대학교) 황두성 (단국대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제29권 제3호
발행연도
2019.6
수록면
531 - 539 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 악성코드 패밀리 분류를 위한 훈련 데이터의 특징을 제안하고, 앙상블 모델을 이용한 다중 분류 성능을 분석한다. 악성코드 실행 파일로부터 API와 DLL 데이터를 추출하여 훈련 데이터를 구성하며, 의사 결정 트리기반 Random Forest와 XGBoost 알고리즘으로 모델을 학습한다. 악성코드에서 빈번히 사용되는 API와 DLL 정보를 분석하며, 고차원의 훈련 데이터 특징을 저차원의 특징 표현으로 변환시켜, 악성코드 탐지와 패밀리 분류를 위한 API, API-DLL, DLL-CM 특징을 제안한다. 제안된 특징 선택 방법은 데이터 차원 축소와 빠른 학습의 장점을 제공한다. 성능 비교에서 악성코드 탐지율은 Random Forest가 93.0%, 악성코드 패밀리 분류 정확도는 XGBoost가 92.0%, 그리고 정상코드를 포함하는 테스트 오탐률은 Random Forest와 XGBoost가 3.5%이다.

목차

요약
ABSTRACT
I. 서론
Ⅱ. 관련연구
Ⅲ. 제안 방법
Ⅳ. 실험 및 토의
Ⅴ. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000879900