메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김광호 (Kangwon National University) 장병훈 (Hankook Electric Power Information) 최황규 (Kangwon National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제3호
발행연도
2019.9
수록면
852 - 857 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
분산자원 집합 거래시장에 참여를 원하는 소비자나 사업자를 위한 가상발전소의 전력거래 플랫폼에서 사업참여자의 수요자원을 관리하고, 이에 적절한 전략을 제공하기 위해 익일 개별 참여자의 수요와 전체 계통의 전력수요를 예측하는 것이 대단히 중요하다. 이러한 전력거래 플랫폼에서 활용하는 것을 목표로 본 논문은 우선 익일의 24시간 전력계통 전력수요예측 모델을 개발하였다. 본 논문에서는 전력수요예측 데이터의 시계열 특성을 고려하여 딥러닝 기법 중 LSTM 알고리즘을 사용하였고, 전력수요량 등의 입출력 값에 원-핫 인코딩 기법을 적용하는 새로운 시도를 하였다. 성능평가에서 일반 DNN과 본 논문에서 구현된 LSTM 예측모델은 각각 평균 제곱근 오차 4.50, 1.89를 나타내어 LSTM 모델이 예측정확도가 높게 나타났다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 딥러닝 전력수요예측 모델
Ⅲ. 결과 및 성능분석
Ⅳ. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0