메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Eka Miranda (Bina Nusantara University) Achmad Benny Mutiara (Gunadarma University) Ernastuti (Gunadarma University) Wahyu Catur Wibowo (Universitas Indonesia)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.19 No.4
발행연도
2019.12
수록면
272 - 282 (11page)
DOI
10.5391/IJFIS.2019.19.4.272

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The objective of this study is to develop a classification method based on convolutional neural network (CNN) and Sentinel-2 satellite imagery including the spectral feature, spectral index and spatial feature together as an input to answer forest monitoring problem. This research also used contextual information on Indonesia National Standard Agency’s document for Land cover classification as a baseline for feature extraction to get the appropriate classifier feature. The test set was located in Semarang, Central Java, Indonesia. The research workflow consists of defining forest class based on Indonesia National Standard Agency for Land cover classification, extracting optical image features based on contextual information of the forest class definition, extracting image features from the Sentinel-2 satellite image, and classifying image object features using CNN classifier. Image segmentation produced 1,211 segments/objects by using eCognition software. Subsequently, these objects were used as a dataset. Overall accuracy was used to evaluate the performance of the classification result. The result showed the classification method results in this study yielded high overall accuracy (97.66%) when using CNN with the image features like NDVI, Brightness, GLCM homogeneity and Rectangular fit. Small improvement of overall accuracy was also achieved when it was compared to GBT with an overall accuracy of 95.50%.

목차

Abstract
1. Introduction
2. Related Work
3. Experimental Method
4. Experimental Results
5. Conclusion
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0