메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tserendulam Dorjmaa (Yonsei University MIRAE Campus) Taeksoo Shin (Yonsei University)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제25권 제4호
발행연도
2019.12
수록면
89 - 103 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 추천시스템의 품질평가 관점에서 이에 대한 다양한 연구들이 진행되고 있다. 추천시스템은 기본적으로 사용자들에게 특정 아이템에 대한 개인화된 추천을 제공하는데 목적이 있으며, 대부분의 추천시스템은 항상 사용자 또는 아이템과 가장 관련 있는 아이템을 추천한다. 그리고 이러한 추천시스템의 성과는 전통적으로 다양한 예측정확도 등에 초점을 두어 왔다. 그러나, 추천시스템은 예측가능성 차원에서 정확해야 할 뿐만 아니라 사용자들에게 유용해야 한다. 특히 최근의 추천시스템에 대한 연구로서, 추천시스템의 평가기준에 속하는, 추천시스템에 대한 사용자 만족도(품질)는 추천시스템이 얼마나 정확하게 추천하느냐 뿐만 아니라 사용자의 의사결정에 얼마나 충분히 도움이 되는지와 관계가 깊다. 예를 들어, 특히 높은 수준의 세렌디티피한 추천은 사용자들이 뜻밖의 아이템이면서 흥미로운 아이템을 찾는데 도움이 된다. 여기서, 세렌디피티란 추천 아이템이 사용자에게 매력적인 동시에 뜻밖의 (비기대성의) 아이템인 정도를 의미한다.
본 연구는 추천시스템의 성과를 나타내는 세렌디피티 지표를 추천시스템에 적용하여 추천시스템의 품질을 평가하는 것을 목표로 한다. 본 연구에서는 세렌디피티 지표는 관련성(매력)이 있는 동시에 뜻 밖인(비기대성의) 아이템을 추천하는 정도로 정의하고, 이 세렌디피티 지표를 측정하기 위해, 추천시스템이 사용자들에게 예상치 못한 유용한 아이템을 찾을 수(또는 추천할 수) 있는 정도를 평가하였다. 본 연구의 주요 실증분석결과로는, 아이템기반 협력 필터링 기법이 사용자기반 협력 필터링 기법보다 더 높은 세렌디피티값을 가지며, 따라서, 추천시스템의 품질평가 차원에서 아이템기반 협력 필터링 기법은 사용자기반 협력 필터링 기법보다는 더 좋은 추천 품질을 갖고 있음을 보여 주었다.

목차

1. Introduction
2. Several issues in Recommender System
3. Research methodology
4. Experimental Results
5. Conclusion
References
국문요약

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-000230178