메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Moon-Hwan Lee (Korea Polytechnic University)
저널정보
한국디자인학회 Archives of Design Research Archives of Design Research Vol.33 No.1 (Wn.133)
발행연도
2020.2
수록면
5 - 15 (11page)
DOI
10.15187/adr.2020.02.33.1.5

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background : Despite the quantitative growth of data, it is difficult though important to induce users to engage with data fully and effectively in everyday environments. To support users’ spontaneous interaction with data and increase user engagement with data in an everyday context, this study attempts to explore a design approach for a system that adaptively visualizes data in the form of everyday objects.
Methods : To understand how people currently utilize data on fine dust concentration and there maining challenges and opportunities to improve users’ data engagement in an everyday context, we interviewed twelve individuals who were frequent users of diverse platforms providing real-time fine dust concentration information.
Results : We determined the design requirements necessary to visualize data in a daily environment. First, to attract users’ attention, it was important to afford them immediate access to data. Second, the granularity of information must vary in accordance with the level of user interest. Third, it is necessary to design data visualization in a style consistent with the characteristics and aesthetic styles of users’ interior spaces. Based on the design requirements, we illustrated the concept by designing an interactive clock that adaptively visualizes the fine dust concentration.
Conclusions : The possibility of an adaptive method of data visualization through everyday objects was investigated. We expect this research to inspire the design of a system that recognizes usage context and visualizes the data appropriately, which thereby induces more people to engage with data in their everyday environment.

목차

Abstract
1. Introduction
2. Design Process
3. Design Proposal
4. Discussion
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-658-000348058