메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김인화 (한양대학교) 박명자 (한양대학교)
저널정보
한국의상디자인학회 한국의상디자인학회지 한국의상디자인학회지 제22권 제1호
발행연도
2020.2
수록면
97 - 111 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Classifying clothing fabrics into fashion images lacks research, but is necessary due to the short cycle of fashion and rapidly changing modern trends as consumers seek to satisfy various needs with an increase of online purchases. There is also a lack of research on fashion trend books which attach real fabrics. Therefore, this study aims to help the planning field by recognizing fabric sensibility related to the fabric image perceived by consumers. The data analysis results from descriptive statistics, t-test, and ANOVA using SPSS are as follows: Differences in the visual tactility evaluation related to the consumer recognized fabric images showed more significant differences in F/W seasons. The elegance image was shown as relatively thick, the avant-garde image was shown as relatively heavy, thick fabric. The feminine image was shown as relatively thin and smooth fabric, the sporty images were shown to be moist, flexible and elastic, and the mannish images were relatively rough. The romantic images were shown as relatively thin fabrics. The conclusions inferred from the visual tactile evaluation related to the fabric images recognized by consumers vary by major, so the prior information concerning fabrics and trends can affect the selection of images. The results of this study show that in order to produce clothes suitable for fashion product planning by learning about visual tactility that consumers recognize, fabrics component data displayed in fashion trend books from 2016 to 2018 are needed, so the planner can receive help when selecting the fabrics suitable for each trend.

목차

Ⅰ. 서론
Ⅱ. 문헌연구
Ⅲ. 연구방법
Ⅳ. 결과 및 논의
Ⅴ. 결론
참고문헌

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-592-000443297