메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sha Qiang (Ewha Womans University) Yun Joo An (Yonsei University) Moon Sub Choi (Ewha Womans University)
저널정보
한국무역학회 무역학회지 貿易學會誌 第45卷 第2號
발행연도
2020.4
수록면
229 - 262 (34page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The price-to-earnings ratio (PER) is an important indicator to measure the stock price and profitability of a firm; it is also the most used valuation indicator among investors. When using the PER to compare the investment values of different stocks, these stocks must come from the same sector. This study mainly focuses on the China’s listed manufacturing firms. By learning from previous research results and analyzing the current situation, we studied the correlation between the manufacturing sector’s PER and its influencing factors from both macro and micro perspectives, the combination of which eventually sheds light on such correlation. Analyzing GDP growth rate data, Manufacturing Purchasing Managers" Index, and other macroeconomic variables from 2008 to 2018, we conclude that these variables jointly have a certain impact on the average PER of the manufacturing sector. We then form panel data based on relevant (2014–2018) data gathered from 317 of China’s A-listed manufacturing firms to study the impact of micro-variables on PER. By using Stata and other software to analyze the panel data, we reach the conclusion that the Debt to Asset Ratio, Return on Equity, EPS growth rate, Operating Profit Ratio, Dividend Payout Ratio, and firm size have a significant impact on PER. The Current Ratio, Treasury Stock ratio and Ownership Concentration have no distinct effect on PER. Based on our empirical findings, we design a theoretical model that affects the PER.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Price-to-Earnings Ratio, Theories, and Empirical Literature
Ⅲ. Variables, Data, and Empirics
Ⅳ. Conclusion
References

참고문헌 (52)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0