메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jun Ho Choi (Inha University) Seunghyun Lee (Inha University) Dae Ha Kim (Inha University) Byung Cheol Song (Inha University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.4
발행연도
2020.8
수록면
274 - 283 (10page)
DOI
10.5573/IEIESPC.2020.9.4.274

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Object detection involves acquiring position information and classification information of objects simultaneously in an image acquired using an image sensor. In general, a small object that occupies a relatively small area within an image is difficult to detect because the information contained in the image is fundamentally inadequate. A person can recognize small objects that are very far away using contextual information, such as the background or relationship with nearby objects. Therefore, it is necessary to enhance the characteristics of small objects using various context information in the image. A new feature enhancement neural network is proposed to enhance the feature maps by extracting the relationships between the non-local features of various sizes. This paper presents an object detection algorithm that is robust against small-object detection based on the feature enhancement neural network. A feature map from the feature-extraction neural network was first branched into multiple feature maps with different receptive fields using respective convolution layers. Non-local relationships between these feature maps were then computed and added to the original feature map for feature enhancement. Finally, the proposed network reflected the overall context information of the image through the enhanced feature map, which is more robust for detecting small objects. The experimental results showed that the proposed method had better performance in small-object detection than the state-of-the-art techniques for the KITTI dataset and PASCAL VOC dataset.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Scheme
4. Performance Evaluation
5. Concluding Remarks
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-001078706