메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
목지윤 (서울시립대학교 토목공학과) 황성환 (서울시립대학교 토목공학과) 최지혁 (서울시립대학교 토목공학과) 문영일 (서울시립대학교 토목공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2019년도 학술발표회
발행연도
2019.1
수록면
319 - 319 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기후변화로 인한 극한 기후 상황의 증가로 홍수기 홍수피해와 갈수기 가뭄피해가 심화되고 있으며, 수자원 관리에 대한 어려움이 발생하고 있다. 효율적인 수자원 관리를 위해 국내에는 약 1,8000여개의 댐을 운영하고 있으며, 댐의 유입량과 저수량을 감안하여 물을 적절하게 방류하는 것을 목적으로 한다. 그러기 위해서는 유입량이 우선적으로 확보되어야 하며, 더 나아가 유입량을 미리 예측할 수 있다면 더욱 효율적인 댐 운영이 가능할 것이다. 기존에는 수위나 유량을 예측하기 위해서는 주로 물리적 모형이 사용되어 왔으며, 물리적 모형은 매개변수 결정을 위한 많은 자료를 필요로 하고 그 과정에서 많은 불확실성을 포함하고 있기 때문에 계산 과정을 거치는 동안 다양한 오차가 반복 누적되는 단점이 있다. 반면에 시계열 데이터 예측을 위한 알고리즘 LSTM(Long Short-Term Memory)은 입력된 데이터와 출력된 데이터를 동시에 이용하여 보다 정확한 예측 값을 얻을 수 있다. 따라서 본 연구는 다목적댐의 유입유량 예측을 위해 구글에서 제공하는 딥러닝 오픈소스 라이브러리를 활용하여 LSTM모형을 구축하고 댐 유입유량을 예측하였다. 분석 자료로는 wamis에서 제공하는 용담댐의 2006년부터 2018년까지의 시간당 유입량 자료를 사용하였으며, 입력 데이터로 모형을 학습한 후 2018년의 유입량을 예측하였다. 예측 값의 정확도를 판단하기 위해 2018년의 실제 유입량 자료와 비교하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0