메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이슬민 (경희대학교 사회기반시스템공학과) 강두선 (경희대학교 사회기반시스템공학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제51권 제11호
발행연도
2018.1
수록면
959 - 969 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
노후화된 상수관로는 단수유발, 수압부족 및 수질악화, 싱크홀 발생 피해와 누수로 인한 경제적 손실 등을 초래한다. 하지만 모든 노후관로를 일시에 보수 및 교체하는 것은 불가능하므로, 사용 중인 관로의 노후도를 정량적으로 판단하여 상수관로의 개량 우선순위를 결정해야 한다. 본 연구에서는 ANN(Artificial Neural Network)-Clustering 기법이 상수관로의 노후도 평가를 위한 새로운 평가방법이 될 수 있음을 제시하였다. 본 연구는 전라남도 YG지역의 배수관로를 적용대상으로 진행하였으며, 관망성능평가 항목을 이용하여 전체 관로를 세 개의 등급으로 분류하여 노후도를 평가하였다. 또한, 본 연구의 적용 가능성을 판단하기 위하여 실무에서 적용 중인 점수평가법 결과와 비교분석을 실시하였으며, 전체 대상관로의 노후도 정도를 직관적으로 파악할 수 있도록 산정된 노후도 등급을 관망도에 도시하였다. 본 연구에서 제안한 노후관로 평가기법은 관로의 다양한 특성값을 손쉽게 변경하여 적용할 수 있으며, 점수평가법과 더불어 상수관로의 유지관리를 위한 객관적이고 합리적인 관망성능평가법이 될 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0