메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
현윤진 (국민대학교 비즈니스IT전문대학원) 김남규 (국민대학교 경영정보학부) 조윤호 (국민대학교 경영학부)
저널정보
한국IT서비스학회 한국IT서비스학회지 한국IT서비스학회지 제14권 제1호
발행연도
2015.1
수록면
237 - 249 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The volume of unstructured text data generated by various social media has been increasing rapidly; therefore, use of text mining to support decision making has also been increasing. Especially, issue Clustering-determining a new relation with various issues through clustering-has gained attention from many researchers. However, traditional issue clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be discovered using traditional issue clustering methods, even if those issues are strongly related in other perspectives. Therefore, issue clustering that fits each of criteria needs to be performed by the perspective of analysis and the purpose of use. In this study, a multi-dimensional issue clustering is proposed to overcome the limitation of traditional issue clustering. We assert, specifically in this study, that issue clustering should be performed for a particular purpose. We analyze the results of applying our methodology to two specific perspectives on issue clustering, (i) consumers' interests, and (ii) related R&D terms.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0