메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배주호 (서강대학교) 박석 (서강대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.11
발행연도
2020.11
수록면
1,061 - 1,070 (10page)
DOI
10.5626/JOK.2020.47.11.1061

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝 학습의 성능이 향상됨에 따라, 전문적인 분야에서 이 방법을 사용하려는 연구가 다양해지고 있다. 유사한 논리적 의미를 가진 법률 문서의 검색은 법률 분야에서 매우 중요한 부분이지만, 관련 분야의 전문적인 지식을 요구하기 때문에 전문가 시스템을 사용한 서비스에서 벗어나기 어려운 실정이다. 또한, 전문가 시스템을 구성하는 데는 전문 인력의 비용이 과다하게 발생하므로 자동화된 유사 법률 문서 검색환경을 구축하기에 어려운 점이 있다. 기존의 유사 문서 검색 서비스가 전문가 시스템과 통계적 시스템에 기반하는 환경을 제공하는데 비하여, 제안하는 방법은 분류 작업을 위한 뉴럴 네트워크를 학습하고 이를 사용하는 방법을 채택하였다. 우리는 설명 가능한 뉴럴 네트워크를 이용하여 의미적 유사도가 높은 법률 문서간의 검색을 제공하는 데이터베이스 시스템 구조를 제안하였다. 이러한 제안 기법의 특징은 유사 문서들 간의 의미적 관련성에 대한 시각적 유사도 평가 방법을 마련하고 이를 검증하는 성과를 보여준다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안기법 : LEXAI
4. 실험
5. 논의 및 고찰
6. 결론
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0