메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dalin Yang (Pusan National University) Ruisen Huang (Pusan National University) Kunqiang Qing (Pusan National University) Keum-Shik Hong (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
1,073 - 1,078 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mild cognitive impairment (MCI) is an intermediate stage leading to Alzheimer"s disease (AD). Diagnosis for MCI patients at an early stage can reduce the chances of developing into a severe condition for cognition. This study aims to identify the healthy control (HC) and MCI through the neural images in the specific time points during the mental tasks by the convolutional neural network (CNN). The signals were acquired by the functional near-infrared spectroscopy (fNIRS). 15 MCI patients and 9 HC subjects are employed in the experiment to perform the N-back task, Stroop task, and verbal fluency task (VFT), respectively. The neural images were generated by the brain map in the specific time points (i.e., 5 sec, 10 sec, 15 sec, 20 sec, 25 sec, 30 sec, 35 sec, 40 sec, 45 sec, 50 sec, 55 sec, 60 sec, and 65 sec). Four layers CNN were applied to classify the neural images of the different time points for three mental tasks (i.e., N-back, Stroop, and VFT). For evaluating the performance of the classifier, we utilized a 5-fold cross-validation method. The CNN results indicated that all the mental tasks obtained a great performance (i.e., averaged accuracy of N-back: 82.59%, Stroop: 85.03%, and VFT: 82.20%). Especially, the highest accuracy of the Stroop task in the 60-sec time point is 98.57%. Thus, these findings demonstrate that the neural images can be useful for the identification of the MCI. The fNIRS could be a next promising non-invasive neural imaging tool for early detection of AD in the clinical field.

목차

Abstract
I. INTRODUCTION
II. METHODOLOGY
III. RESULTS
IV. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001568946