메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seong-Kyu Kim (Joongbu University) Jun-Ho Huh (Korea Maritime and Ocean University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
1,124 - 1,133 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the recent Coronavirus (COVID-19) outbreak, it is not easy for all schools to catch students’ irregularities during online classes. Research is conducted based on a transparent Blockchain that prevents such irregularities. We also want to verify the nodes participating in the test using the latest neuron engine and Blockchain technology. Nodes participating in the network for testing are reinforced using safe algorithms. This study also presents these research models and implements the test environment through the cloud environment of AWS (Amazon Web Service), a network environment. Nodes take the P2P environment and serve as online nodes during more real-time testing. The result data are also derived. These experimental environments later validate more node data. In addition, the experiment showed that the similarity and distribution levels were very good, close to "0," and the performance of the Blockchain was about 4,000 TPS, so the actual testable study was conducted. In this paper, we propose artificial intelligence neurons and verification Blockchain consensus algorithms to verify the evaluation of these online environments. In addition, proposals are made to study verification and performance data over a neural network. In the future, many diseases, etc. are expected to cause a paradigm shift in universities and educational institutions.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORKS
3. TEST-FAILURE BLOCKCHAIN RESEARCH METHODOLOGY
4. PERFORMANCE EVALUATION AND LIMITATIONS OF THE RESEARCH
5. DISCUSSION AND FUTURE APPLICATION MODEL
6. CONCLUSION AND FUTURE WORK
7. REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001568840