메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최현국 (광운대학교) 김상민 (광운대학교) 박호종 (광운대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제6호
발행연도
2020.11
수록면
845 - 853 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술을 제안한다. 산업현장에서의 소음은 작업자의 청력손실의 주요 원인이 되며, 소음 문제를 해결하기 위한 소음 제거 기술이 널리 연구되고 있다. 그러나 기존 소음 제거 기술은 모든 소리를 구분 없이 차단하는 문제를 가지며, 모든 소음에 공통된 제거 방법을 적용하여 각 소음에 최적화된 소음 제거 성능을 보장할 수 없다. 이러한 문제를 해결하기 위해 사운드 종류에 따라 선택적 동작을 하는 소음 제거가 필요하고, 본 논문에서는 이를 위해 딥 러닝기반의 환경 사운드 분류 기술을 제안한다. 제안 방법은 기존 오디오 특성인 멜-스펙트로그램의 한계를 극복하기 위해 새로운 특성으로서 멜-스펙트로그램 기반의 시간 변화 특성과 통계적 주파수 특성을 사용하며, 합성곱 신경망을 이용하여 특성을 모델링 한다. 제안하는 분류기를 사용하여 3가지 소음과 2가지 비소음으로 구성된 총 5가지 클래스로 사운드를 분류하였고, 제안하는 오디오 특성을 사용하여 기존 멜-스펙트로그램 특성을 사용할 때에 비하여 분류 정확도가 6.6% 포인트 향상되는 것을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 사운드 분류 방법
Ⅲ. 성능 평가
Ⅳ. 결론
참고문헌 (References)

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0