메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ilyas Idrisovich Ismagilov (Kazan Federal University) Ghena Alsaied (Kazan Federal University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.19 No.4
발행연도
2020.12
수록면
896 - 900 (5page)
DOI
10.7232/iems.2020.19.4.896

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As a widely used method, regression analysis plays an increasingly important role in creating statistical models and making forecasts in the field of economics and finance. The use of traditional regression for modeling socio-economic processes is not sufficiently substantiated in some situations. Currently, a new direction is being actively developed, associated with fuzzy regression analysis and its application as an alternative to classical methods for modeling economic phenomena. Fuzzy regression methods are based on the theory of fuzzy sets. A number of methods and their modifications are proposed for constructing fuzzy regression models, but most of them use triangular fuzzy symmetric numbers. In this paper, we propose a new method for constructing linear fuzzy regression using trapezoidal fuzzy numbers. The method is based on dividing the sample using a regression model which is estimated by using the ordinary least squares. Two fuzzy regressions using triangular numbers are estimated from the formed samples, on the basis of which a fuzzy model with trapezoidal fuzzy numbers is constructed. Basing on the proposed method, a linear fuzzy model of the gross regional product as an indicator of the economic development of the Republic of Tatarstan of Russia is constructed depending on a number of factors. A comparative assessment of the quality of fuzzy regression models using triangular and trapezoidal numbers was performed.

목차

ABSTRACT
1. INTRODUCTION
2. METHODS
3. RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0