메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
양윤모 (한국항공대학교) 김동신 (한국항공대학교) 오병태 (한국항공대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
205 - 208 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 딥러닝 기반의 깊이 영상 초해상도 기술에 대해서 제안한다. 기존 깊이 영상의 초해상도 기술은 고해상도의 컬러 영상과 저해상도 깊이 영상을 이용하여 화소 값을 개선시켜 고해상도의 깊이 영상을 예측하였다. 하지만 이러한 방법들은 단순히 화소 값을 증가 또는 혹은 감소시키는 방법으로 언더슈팅 또는 오버슈팅과 문제를 발생시켜 성능 향상을 제한하였다. 제안하는 기법에서는 이러한 한계를 극복하기 위해 화소의 위치를 이동하여 영상을 복원하는 격자 워핑 방식을 반복적으로 적용하여 고해상도 깊이 영상을 예측하였다. 실험 결과, 제안한 방식이 기존 방법들에 비해 정력적, 시각적 품질을 개선시켰음을 확인하였다.

목차

요약
1. 서론
2. 제안 알고리즘
3. 실험
4. 결론
참조문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001483207