메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이주연 (숙명여자대학교) 이기용 (숙명여자대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제26권 제1호
발행연도
2021.2
수록면
127 - 140 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 센서 측정 데이터, 구매이력 등과 같이 시간 정보를 포함하는 시퀀스(sequence) 데이터가 다양한 응용에서 발생되고 있다. 주어진 시퀀스들 중 다른 시퀀스들과 매우 상이한 이상(anomalous) 시퀀스를 탐지하는 기법들은 지금까지 많이 연구되어왔으나 이들 대부분은 주로 시퀀스 내 원소들의 순서만을 고려하여 이상 시퀀스를 찾는다는 한계가 있다. 따라서 본 논문에서는 원소들의 순서와 원소들 간의 시간 간격 모두를 고려하는 새로운 이상 시퀀스 탐지 기법을 제안한다. 본 논문에서 제안하는 방법은 확장된 LSTM 오토인코더 모델을 사용한다. 이 모델은 시퀀스를 해당 시퀀스 내 원소들의 순서와 시간 간격 모두를 효과적으로 학습할 수 있는 형태로 변환하는 층을 추가로 가진다. 제안방법은 확장된 LSTM 오토인코더 모델로 주어진 시퀀스들의 특징을 학습한 뒤, 해당 모델이 잘 복원하지 못하는 시퀀스를 이상 시퀀스로 탐지한다. 본 논문에서는 정상 시퀀스와 이상 시퀀스를 혼합한 가상 데이터를 사용하여 제안 방법이 전통적인 LSTM 오토인코더만을 사용하는 방법과 비교하여 100%에 가까운 정확도를 나타냄을 보인다.

목차

초록
ABSTRACT
1. 서론
2. 사전 지식 및 관련 연구
3. 제안 방법
4. 실험 결과
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001568887