메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shengjie Ma (Kwangwoon University) Hong Cheng (Kwangwoon University) Hyukjoon Lee (Kwangwoon University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.15 No.2
발행연도
2021.6
수록면
84 - 95 (12page)
DOI
10.5626/JCSE.2021.15.2.84

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Deep learning has become one of the most powerful prediction approaches, and it can be used to solve classification and regression problems. We present a novel deep learning-based indoor Wi-Fi path loss modeling approach. Specifically, we propose a local area multi-line scanning algorithm that generates input images based on measurement locations and a floor plan. As the input images contain information regarding the propagation environment between the fixed access points (APs) and measurement locations, a convolutional neural network (CNN) model can be trained to learn the features of the indoor environment and approximate the underlying functions of the Wi-Fi signal propagation. The proposed deep learning-based indoor path loss model can achieve superior performance over 3D ray-tracing methods. The average root mean square error (RMSE) between the predicted and measured received signal strength values in the two scenarios is 4.63 dB.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. DEEP LEARNING-BASED PATH LOSS MODELING SYSTEM
IV. EXPERIMENTAL RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-001873841