메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이철원 (가천대학교) 성남철 (가천대학교) 최원창 (가천대학교)
저널정보
한국건축친환경설비학회 한국건축친환경설비학회 논문집 한국건축친환경설비학회 논문집 제15권 제3호
발행연도
2021.6
수록면
252 - 264 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
In this study, Python is used to predict chiller energy consumption and improve the performance of forecasting models. The forecasting model used a random forest model and an artificial neural network model. To improve the performance of the forecasting model, the accuracy was evaluated by adjusting the number of inputs and the training data size. As a result, for the random forest model, the prediction performance allowed by the criteria was shown from the number of input variables to seven, and the CvRMSE improved the prediction performance by up to 23.91% by increasing the number of inputs. The training data size was shown to have acceptable predictive performance for the criterion at 80% and increased the training data size, improving the predictive performance by up to 14.08%. For artificial neural network (ANN) models, the predictive performance allowed by the criterion was shown to have a predictive performance with four inputs, and the CvRMSE improved by up to 14.90% by increasing the number of inputs. The training data size was shown to have acceptable predictive performance for the criterion at 70% and the maximum increase in the training data size resulted in improved predictive performance by up to 11.99% for CvRMSE. Comparing the two models, the artificial neural network model has better predictive performance than the random forest model, and the model for improving predictive performance is also more advantageous for the use of input variables and the adjustment of training data size.

목차

ABSTRACT
서론
냉동기 데이터 생성 및 입력변수 선정
예측 모델의 성능향상 및 평가 방법
예측 결과 및 분석
결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0