메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재인 (Sungkyunkwan University) 곽기성 (Sungkyunkwan University) 김경수 (Sungkyunkwan University) 강원율 (Institute of Vehicle Engineering) 신대영 (Institute of Industrial Technology) 황성호 (Sungkyunkwan University)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.18 No.4
발행연도
2021.12
수록면
9 - 18 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes a method for creating learning datasets to recognize obstacles using deep learning algorithms in automated construction machinery or an autonomous vehicle. Recently, many researchers and engineers have developed various recognition algorithms based on deep learning following an increase in computing power. In particular, the image classification technology and image segmentation technology represent deep learning recognition algorithms. They are used to identify obstacles that interfere with the driving situation of an autonomous vehicle. Therefore, various organizations and companies have started distributing open datasets, but there is a remote possibility that they will perfectly match the user"s desired environment. In this study, we created an interface of the virtual simulator such that users can easily create their desired training dataset. In addition, the customized dataset was further advanced by using the RDBMS system, and the recognition rate was improved.

목차

Abstract
1. 서론
2. 가상 환경 구성
3. 시나리오, 데이터 셋 제작 및 검증 결과
4. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-550-000045915