메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Andréia Fátima Tormen (University of Passo Fundo) Zacarias Martin Chamberlain Pravia (University of Passo Fundo) Fernando Busato Ramires (University of Passo Fundo) Moacir Kripka (University of Passo Fundo)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.34 No.3
발행연도
2020.1
수록면
409 - 421 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the optimized structure sizing, the optimization methods are inserted in this context in order to obtain satisfactory solutions, which can provide more economical structures, besides allowing the consideration of the factors related to the environmental impacts in the structural design. This work proposes a mathematical model for the optimization of steel-concrete composite beams aiming to minimize the monetary cost and the environmental impact, using the Harmonic Search optimization method. Discrete variables were the dimensions of the steel profiles and the thickness of the collaborating slab of the composite steel-concrete beam. The proposed model was implemented in Fortran programming language and based on improvements in the structure of the optimization method proposed by Medeiros and Kripka (2017). To prove the effectiveness and applicability of the model, as well as the Harmonic Search method, analyzes were performed with different configurations of steel-concrete composite beams, in order to provide guidelines that make the use of these systems more streamlined. In general, the Harmonic Search optimization method has proved to be efficient in the search for the optimized solutions, as well as important considerations on the optimization of the monetary and environmental costs of steel-concrete composite beams were obtained from the developed examples.

목차

등록된 정보가 없습니다.

참고문헌 (55)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0