메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강대영 (단국대학교) Hieu Pham Duong (Vietnam National University School of Medicine and Pharmacy) 박정철 (단국대학교)
저널정보
대한구강악안면임프란트학회 대한구강악안면임플란트학회지 대한구강악안면임플란트학회지 제24권 제3호
발행연도
2020.1
수록면
148 - 181 (34page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Artificial intelligence and deep learning algorithms are infiltrating various fields of medicine and dentistry. The purpose of the current study was to review literatures applying deep learning algorithms to the dentistry and implantology. Electronic literature search through MEDLINE and IEEE Xplore library database was performed at 2019 October by combining free-text terms and entry terms associated with ‘dentistry’ and ‘deep learning’. The searched literature was screened by title/abstract level and full text level. Following data were extracted from the included studies: information of author, publication year, the aim of the study, architecture of deep learning, input data, output data, and performance of the deep learning algorithm in the study. 340 studies were retrieved from the databases and 62 studies were included in the study. Deep learning algorithms were applied to tooth localization and numbering, detection of dental caries/periodontal disease/periapical disease/oral cancerous lesion, localization of cephalometric landmarks, image quality enhancement, prediction and compensation of deformation error in additive manufacturing of prosthesis. Convolutional neural network was used for periapical radiograph, panoramic radiograph, or computed tomography in most of included studies. Deep learning algorithms are expected to help clinicians diagnose and make decisions by extracting dental data, detecting diseases and abnormal lesions, and improving image quality.

목차

등록된 정보가 없습니다.

참고문헌 (85)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0