메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
백우열 (연세대학교) 변일환 (연세대학교) 김영석 (연세대학교) 유대현 (연세대학교) 정준 (연세대학교) 노태석 (연세대학교)
저널정보
한국유방암학회 Journal of Breast Cancer Journal of Breast Cancer Vol.20 No.1
발행연도
2017.1
수록면
98 - 103 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Breast volume assessment is one of the most important steps during implant-based breast reconstruction because it is critical in selecting implant size. According to previous studies, there is a close relationship between the mastectomy specimen weight and resected breast volume. The aim of this study was to evaluate long-term patient satisfaction with implantbased breast reconstruction guided by the ratio of implant volume to mastectomy specimen weight. In doing so, we describe the ideal ratio for patient satisfaction. Methods: A total of 84 patients who underwent implant-based breast reconstruction for breast cancer were included in this study. The patients were grouped by the ratio of implant size to mastectomy specimen weight (group 1, <65%; group 2, 65%–75%; and group 3, >75%). Outcome analysis was performed using a questionnaire of patient satisfaction and the desired implant size. Results: Patient satisfaction scores concerning the postoperative body image, size, and position of the reconstructed breast were significantly higher in group 2. The average ratio of the ideal implant volume to mastectomy specimen weight for each group was 71.9% (range, 54.5%–96.7%), with the differences across the three groups being not significant (p=0.244). Conclusion: Since there is an increase in breast reconstruction, selecting the appropriate breast implant is undoubtedly important. Our novel technique using the ratio of implant volume to mastectomy specimen weight provides physicians a firm guide to intraoperative selection of the proper implant in reconstructive breast surgery.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0