메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영수 (LG전자) 권민수 (경희대학교) 권오병 (경희대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제27권 제2호
발행연도
2022.5
수록면
37 - 64 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인공지능의 사회적수용도가 증가하면서 머신러닝 기법을 기업에 적용하는 사례가 증가하고 있다. 머신러닝 기법의 선정에는 주로 정확성이나 해석 가능성 등 기술적 요인이 주로 기준이 되어왔다. 그러나 머신러닝 채택의 성공은 개발부서, 사용부서, 리더십과 조직문화 등 경영관리 요인도 영향을 주기도 한다. 아쉽게도 기술적 요인과 경영관리적 요인이 함께 고려된 머신러닝 선정의 성공 요인을 이해하는 통합 연구가 거의 존재하지 않는다. 이에 본 논문의 목적은 기업 내 머신러닝 선정을 이해하기 위해 John Rice의 algorithm selection process model과 task-technology fit, 그리고 IS Success Model 이론을 결합한 기술-경영관리 통합 모형을제안하고 실증적 분석을 하는 것이다. 머신러닝을 도입한 국내 기업 240곳을 대상으로 설문 분석을 실시한 결과 알고리즘 품질과 데이터 품질이 높을수록 문제-알고리즘 적합성에 높게 영향을 주는 것으로 나타났으며, 문제-알고리즘 적합성은 조직의 생산성과 혁신성에도 유의한 영향을 미치는 것으로 검증되었다. 또한 외주화와 경영진 지원이 머신러닝 시스템 품질에 긍정적인 영향을 미치고, 데이터 중심 경영 및 동기화와 같은 조직문화 요인은 활용성과에 높은 영향을 미치는 것으로 확인되었다.

목차

초록
ABSTRACT
1. 서론
2. 이론적 배경과 가설
3. 연구방법
4. 결과
5. 토의 및 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001335760