메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyunghwan Choi (Korea National Defense University) Seongam Moon (Korea National Defense University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.21 No.2
발행연도
2022.6
수록면
220 - 227 (8page)
DOI
10.7232/iems.2022.21.2.220

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This is the first to comprehensively review the issues such as contract parameters and research models/methods of Quantity Flexibility Contract (QFC) in a supply chain system. We are experiencing a low-frequency-high-impact (LFHI) event such as coronavirus (COVID-19), and rapid technological changes, bringing about a rapid change in customer demand now. Matching supply with demand is one of the biggest challenges in Supply Chain Management (SCM). That is because a sudden rise or drop in customer demand makes it difficult to coordinate objectives between a manufacturer and a retailer. Meanwhile, a QFC has been highlighted as an intensive method in response to this rapid change by gaining time for better observing the market demand before placing its final orders. The intention of this paper is twofold. First, we classify QFC’s articles into contract parameters, comparison and composition of QFC with other strategies and contract types, research models, and methods up to the present point. Second, we guide the future research directions and developments of QFC so that many researchers start easily approaching and studying it. We hope that our discovery from the review provides opportunities to spot gaps in the literature that could be accomplished and values for further future research directions.

목차

ABSTRACT
1. INTRODUCTION
2. REVIEW METHODOLOGY
3. THE CLASSIFICATION BY CONTRACT PARAMETERS
4. RESEARCH MODELS AND METHODS
5. DISCUSSION AND FUTURE STUDY DIRECTIONS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-001519787