메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
원태연 (Konkuk University) 조수민 (Konkuk University) 어양담 (Konkuk University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제40권 제3호
발행연도
2022.6
수록면
177 - 185 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 딥러닝을 통해 고해상도 광학 위성영상에 동종센서로 촬영한 영상을 참조하여 폐색 영역을 복원하는 방법을 제안하였다. 패치 단위로 분할된 영상에서 원본 영상의 화소 분포를 최대한 유지하며 폐색 영역을 모의한 영상과 주변 영상의 자연스러운 연속성을 위해 ConvNeXt 블록을 적용한 CycleGAN (Cycle Generative Adversarial Network) 방법을 사용하여 실험을 진행하였고 이를 3개의 실험지역에 대해 분석하였다. 또한, 학습 패치 크기를 512*512화소로 하는 경우와 2배 확장한 1024*1024화소 크기의 적용 결과도 비교하였다. 서로 특징이 다른 3개의 지역에 대하여 실험한 결과, ConvNeXt CycleGAN 방법론이 기존의 CycleGAN을 적용한 영상, Histogram matching 영상과 비교하여 개선된 R² 값을 보여줌을 확인하였다. 학습에 사용되는 패치 크기별 실험의 경우 1024*1024화소의 패치를 사용한 결과, 약 0.98의 R²값이 산출되었으며 영상밴드별 화소 분포를 비교한 결과에서도 큰 패치 크기로 학습한 모의 결과가 원본 영상과 더 유사한 히스토그램 분포를 나타내었다. 이를 통해, 기존의 CycleGAN을 적용한 영상 및 Histogram matching 영상보다 발전된 ConvNeXt CycleGAN을 사용할 때 원본 영상과 유사한 모의 결과를 도출할 수 있었고, 성공적인 모의를 수행할 수 있음을 확인하였다.

목차

Abstract
초록
1. 서론
2. 적대적 생성 신경망
3. 제안 방법론
4. 실험 및 분석
4. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0