메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동엽 (영남이공대학교) 최상용 (영남이공대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제4호
발행연도
2022.8
수록면
629 - 635 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 사회적 변화와 IC T기술의 발전에 따라 사이버 위협 또한 증가되고 있으며, 사이버위협에 사용되는 악성코드는 분석을 어렵게 하기 위해 분석환경 회피기술, 은닉화, 파일리스 유포 등 더욱 고도화 지능화 되고 있다. 이러한 악성코드를 효과적으로 분석하기 위해 머신러닝 기술이 활용되고 있지만 분류의 정확도를 높이기 위한 많은 노력이 필요하다. 본 논문에서는 머신러닝의 분류성능을 높이기 위해 API호출 구간 특성 기반 악성코드 탐지 기술을 제안한다. 제안하는 기술은 악성코드와 정상 바이너리의 API 호출 순서를 시간을 기준으로 구간으로 분리하여 각 구간별 API의 호출특성과 바이너리의 엔트로피 등의 특성인자를 추출한 후 SVM(Support Vector Mechine) 알고리즘을 이용하여 제안하는 방법이 악성바이너리를 잘 분석할 수 있음을 검증하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. API의 호출 구간 특성 기반 악성코드 탐지 기술
IV. 실험 및 결과분석
V. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0