메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
권명준 (한국과학기술원) 손민지 (한국과학기술원) 김윤지 (한국과학기술원) 김창익 (한국과학기술원)
저널정보
대한전자공학회 대한전자공학회 학술대회 2022년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2022.6
수록면
1,946 - 1,950 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, convolutional neural network-based artificial intelligence has achieved significant success in various image processing tasks, but it is vulnerable to adversarial examples crafted to mislead its prediction by adding imperceptible perturbations to images. When deploying AI models in safety-critical fields like medical imaging or facial recognition, their robustness against adversarial attacks is critical. Thus, it is necessary to study adversarial attacks to find the weak points of the networks and fix them. This paper proposes a transfer-based attack method that utilizes an ensemble-training technique called DVERGE, which has been used for adversarial defense so far. To be specific, an ensemble network is trained to isolate adversarial vulnerability in each submodel by distilling features, where the ensemble model is used as a source model to apply iterative gradient sign method-based transfer-based attacks. We experimentally show that it improves the transferability of the combined attacks.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-569-001551513